Presynaptic inhibitory actions of pregabalin on excitatory transmission in superficial dorsal horn of mouse spinal cord: Further characterization of presynaptic mechanisms

نویسندگان

  • Rie Matsuzawa
  • Tomonori Fujiwara
  • Kohei Nemoto
  • Teruyuki Fukushima
  • Shigeki Yamaguchi
  • Kimio Akagawa
  • Yuuichi Hori
چکیده

Pregabalin is widely used as an analgesic for the treatment of neuropathic pain. In the present experiments using mouse spinal slices, we recorded electrically evoked glutamatergic excitatory postsynaptic currents (eEPSCs) from superficial dorsal horn neurons. Pregabalin reduced the amplitude of eEPSCs, and increased the paired pulse ratio. Pregabalin also inhibited the frequency of spontaneously occurring miniature EPSCs without affecting their amplitude. Partial ligation of the sciatic nerve increased the expression of the calcium channel α2δ-1 subunit, and increased the presynaptic inhibitory action of pregabalin. Intrathecal injection of antisense oligodeoxynucleotide against the α2δ-1 subunit, decreased the expression of α2δ-1 mRNA in the spinal dorsal horn, and decreased pregabalin's action. These results provide further evidence that pregabalin exerts its presynaptic inhibitory action via binding with the α2δ subunit in a state-dependent manner. Furthermore, presynaptic actions of pregabalin were attenuated in knockout mice lacking the protein syntaxin 1A, a component of the synaptic vesicle release machinery, indicating that syntaxin 1A is required for pregabalin to exert its full presynaptic inhibitory action. These observations might suggest that direct and/or indirect interactions with the presynaptic proteins composing the release machinery underlie at least some part of pregabalin's presynaptic actions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of excitatory and inhibitory agents and a glial inhibitor on optically-recorded primary-afferent excitation

The effects of GABA, excitatory amino-acid receptors antagonists and a glial metabolism inhibitor on primary-afferent excitation in the spinal dorsal horn were studied by imaging the presynaptic excitation of high-threshold afferents in cord slices from young rats with a voltage-sensitive dye. Primary afferent fibers and terminals were anterogradely labeled with a voltage-sensitive dye from the...

متن کامل

Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons.

It is generally accepted that presynaptic transmitter release is mainly regulated by subtypes of neuronal high-voltage-activated Ca(2+) channels. Here for the first time, we examined the role of T-type Ca(2+) channels (T-channels) in synaptic transmission in the dorsal horn (DH) of the spinal cord using patch-clamp recordings from acute spinal cord preparations from both rat and mouse. We found...

متن کامل

Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord.

To clarify whether inhibitory transmission in the superficial dorsal horn of the spinal cord is reduced after peripheral nerve injury, we have studied synaptic transmission in lamina II neurons of an isolated adult rat spinal cord slice preparation after complete sciatic nerve transection (SNT), chronic constriction injury (CCI), or spared nerve injury (SNI). Fast excitatory transmission remain...

متن کامل

Facilitatory actions of serotonin type 3 receptors on GABAergic inhibitory synaptic transmission in the spinal superficial dorsal horn.

Analgesic effects of serotonin (5-hydroxytryptamine [5-HT]) type 3 (5-HT3) receptors may involve the release of gamma-aminobutyric acid (GABA) in the spinal dorsal horn. However, the precise synaptic mechanisms for 5-HT3 receptor-mediated spinal analgesia are not clear. In this study, we investigated whether GABAergic neurons in the superficial dorsal horn (SDH) express functional 5-HT3 recepto...

متن کامل

Presynaptic inhibitory effects of fluvoxamine, a selective serotonin reuptake inhibitor, on nociceptive excitatory synaptic transmission in spinal superficial dorsal horn neurons of adult mice.

Fluvoxamine, a selective serotonin (5-HT) reuptake inhibitor, has been shown to exert analgesic effects in humans and laboratory animals. However, its effects on spinal nociceptive synaptic transmission have not been fully characterized. Here, whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult mice, and the effects of fluvoxamine on m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuroscience Letters

دوره 558  شماره 

صفحات  -

تاریخ انتشار 2014